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Abstract

The use of gradient based optimization algorithms in inverse design is well established as

a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to

evaluate the objective function (from the approximate states) and its gradient, then passes this
information to an optimization algorithm. Once the simulation scheme (CFD ow solver) has

been selected and used to provide approximate function evaluations, there are several possible

approaches to the problem of computing gradients. One popular method is to di�erentiate
the simulation scheme and compute design sensitivities that are then used to obtain gradients.

Although this black-box approach has many advantages in shape optimization problems, one

must compute mesh sensitivities in order to compute the design sensitivity.
In this paper, we present an alternative approach using the PDE sensitivity equation to

develop algorithms for computing gradients. This approach has the advantage that mesh sensi-

tivities need not be computed. Moreover, when it is possible to use the CFD scheme for both
the forward problem and the sensitivity equation, then there are computational advantages. An

apparent disadvantage of this approach is that it does not always produce consistent deriva-

tives. However, for a proper combination of discretization schemes, one can show asymptotic

consistency under mesh re�nement, which is often su�cient to guarantee convergence of the

optimal design algorithm. In particular, we show that when asymptotically consistent schemes

are combined with a trust-region optimization algorithm, the resulting optimal design method
converges. We denote this approach as the sensitivity equation method.

The sensitivity equation method is presented, convergence results are given and the approach

is illustrated on two optimal design problems involving shocks.
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1 Introduction

Optimal design problems consist of selecting design parameters for a system in order

to optimize a given design objective, usually constrained to satisfy a partial di�erential

equation. In many of these problems, design parameters describe the shape of an

object. Examples of these shape optimization problems include drag reduction [21],

[22], weight minimization [14], optimal sensor/actuator placement [6], airfoil design

[16], [17], [18], [19] and the design of wind tunnel elements [15].

Traditionally, approximate solutions of these problems are found by \cut and try"

methods, combining a designer's engineering experience with repeated experimental

testing. This is often expensive, motivating computational methods which compute

the optimal design directly. These methods require de�ning an objective function

and an appropriate PDE model of the states of the system. A comparison of several

optimal design methods may be found in [13].

Many popular approaches couple a gradient-based optimization algorithm with

function evaluations provided by a proven simulation scheme. One of the disadvan-

tages of these approaches is the expense of computing the gradient. Using �nite

di�erences is often too costly, even if appropriate step sizes can be found and the sim-

ulation scheme can take advantage of \nearby" solutions (as is the case with iterative

solvers for nonlinear equations).

Two strategies for alleviating the computational expense of gradient evaluations

are adjoint variables [17] and design sensitivities [14]. Adjoint methods are advanta-

geous when either the problem is self-adjoint or there are a large number of design

parameters. However, when there are relatively few design parameters, using design

sensitivities, quantities which describe the inuence of the design parameters on the

states of the system, is an attractive alternative. In addition to e�cient gradient

computations, they can be used in some problems to construct an e�ective update of

the approximate Hessian for quasi-Newton optimization algorithms, e.g. [10].

A standard approach often used to compute the design sensitivities is based on

(implicitly) di�erentiating the simulation scheme (for the states) with respect to the

design variables. Using the chain rule to carry out this calculation, results in an

e�cient numerical scheme for the sensitivities. The e�ciency arises from reusing

many of the quantities computed in the simulation scheme. In fact, the \inversion"

of the system matrix (i.e. the matrix factorization) can often be reused.
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A disadvantage of this approach is that for shape optimization problems, the dis-

cretization is parameter dependent. Thus, derivatives of the discretization (mesh

sensitivities) are required for each shape parameter. Depending on the simulation

scheme used for the states, determining the discretization can require the solution of

a partial di�erential equation (as is the case for �nite di�erence solutions of viscous

ow problems [26]). This requires a strategy for computing the mesh sensitivities

[20], or for computing an approximation to them [24], [25].

Another approach to �nding design sensitivities relies on approximating the par-

tial di�erential equation, known as the sensitivity equation. This equation is obtained

by implicitly di�erentiating the (in�nite dimensional) state equation with respect to

each design parameter. As shown in [2], using the same numerical scheme to ap-

proximate the sensitivity equation which is used to approximate the states, leads to

an e�cient scheme with similar computational advantages as the design sensitivity

approach described above. Furthermore, since the discretization is applied directly

to the sensitivity equations, no sensitivity of the mesh is required. The sensitivity

equation is always linear in the design sensitivity, even if the state equation is non-

linear. Since there is no requirement to use the same numerical scheme, it is possible

to gain additional computational savings by using a scheme which takes advantage

of the linearity in the sensitivity equations.

An apparent disadvantage of this approach is that it does not compute consistent

derivatives. In other words, the sensitivity equation approach does not capture the

sensitivity of the truncation errors in the scheme. Thus, there is a concern that

providing an optimization algorithm with an approximation of the gradient of the

in�nite dimensional objective function instead of the gradient of the approximate

objective function would cause the algorithm to fail. One might expect, however,

that if the gradients are \close enough" to the true gradients, then the optimization

algorithm should still converge. We show that this convergence can be established if

one combines compatible simulation and optimization schemes.

Trust-region optimization algorithms are constructed to be globally convergent by

minimizing a model of the objective function in a region where the model is \trusted".

This leads to robust algorithms capable of handling inaccuracies in the model. In fact,

convergence results have been given for these algorithms when the model is based on

inaccurate gradient information [7], [8]. The results hold provided the gradients satisfy

a given error condition. Therefore, it is natural to consider an optimal design method
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which couples a trust-region optimization algorithm with gradients computed using

the sensitivity equation approach. We denote this combined sensitivity/trust-region

algorithm by the sensitivity equation method (SEM).

In this work, we present and analyze the sensitivity equation method. The method

can be applied to a wide class of optimal design problems, including those mentioned

above, however, we focus on the particular example of shape optimization of Euler

ows in order to illustrate the method. In the next section, we describe two design

problems. In Section 3, we present the sensitivity equation method including the

trust-region algorithm and the use of the sensitivity equation to �nd the design sensi-

tivities. Furthermore, we compare various numerical approximations of the sensitivity

equation with approaches based on the discretized equations. Section 4 discusses a

number of convergence issues and includes a convergence theorem for the sensitivity

equation method. In Section 5, we use a one dimensional duct design problem to de-

scribe the implementation of the sensitivity equation approach. Finally, we describe

the implementation and perform shape optimization for a two dimensional forebody

simulator design problem where the steady-state Euler equations are used to model

the state variables.

2 Illustrative Examples

We present two optimal design problems below which are used to illustrate the sen-

sitivity equation method. These problems consist of determining shape parameters

which produce a solution to the Euler equations that matches a desired ow \as

closely as possible." The �rst problem is motivated by the design of a wind tunnel

element in order to produce a desired ow in the test section. We study a two di-

mensional analogue of this problem. The second problem consists of prescribing the

cross-sectional area of a one dimensional duct to produce a duct ow which matches

a desired ow pro�le. This problem was used by Frank and Shubin [13] in their study

of optimal design.

2.1 Forebody Simulator Design Problem

The Arnold Engineering Development Center (AEDC) operates a free-jet test facility

which is used for full-scale testing of commercial and military aircraft engines. Engines

are evaluated for performance and safety under various free ight conditions. While
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Figure 1: Forebody Simulator Design Problem

this facility is large enough to house engines, it is not large enough to house an entire

aircraft forebody. Thus, the e�ect of the aircraft forebody on the engine inlet ow

pro�le must be simulated. One way of doing this is to replace the actual forebody by

a smaller object, called a forebody simulator (FBS). The use of the FBS is illustrated

in Figure 1. The FBS design problem is to specify the shape of this FBS so that

it produces an engine inlet ow pro�le which is as close to some desired pro�le as

possible [15]. The desired pro�le can be determined by performing either a wind

tunnel simulation or a computational simulation of a model con�guration resembling

a test condition of the aircraft engine.

In order to demonstrate the applicability of the SEM, we consider a two dimen-

sional analogue of this problem. This problem, depicted in Figure 2, is to �nd the

shape of the curve �, which produces an outow that matches the outow generated

by the original (longer) forebody as closely as possible. The ow, Q (consisting of the

density �, the momentum �uî + �vĵ and the sum of the internal and kinetic energy

E) is modeled using the steady state Euler equations,
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Figure 2: 2D Forebody Simulator Design Problem
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+
@G
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= 0; (1)

where

F = uQ+

2
6666664

0

P

0

Pu

3
7777775
; G = vQ+

2
6666664

0

0

P

Pv

3
7777775

and Q =

2
6666664

�

�u

�v

E

3
7777775
: (2)

The pressure P is related to the elements of Q by

P = ( � 1)

�
E � 1

2
�
�
u2 + v2

��
; (3)

where  is the ratio of speci�c heats ( = 1:4 for air). Given a forebody simulator

shape �, the ow Q(�) is determined by solving the Euler equations (1) in the test

cell domain 
(�) subject to the boundary conditions (for supersonic ow):

Q = Qin at the test cell inow, (4)

(u; v) � n̂ = 0 and (5)

@

@n

�
(u; v) � t̂

�
= 0 at the walls (no ow penetration), (6)
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where n̂ and t̂ are the normal and tangential vectors at the boundary, respectively.

The set of admissible forebody simulator shapes is

A =
n
� 2 C1(a; b)

��� �(a) = �a; �(b) = �b and �(x) � �a; 8x 2 (a; b)
o
: (7)

A statement of the design problem is given below.

Problem 2.1 (Forebody Simulator Design) Let Q̂ be a desired ow at the out-

ow (engine inlet),

S = f(x; y) j x = b; �b � y � cg : (8)

De�ne the objective function

J (�) =
Z
S

Q(�)� Q̂
2
2
dS; (9)

where Q(�) represents the solution of (1) with boundary conditions (4)-(6) in the test

cell 
(�). The forebody simulator design problem is to �nd �� 2 A such that

J (��) � J (�) for all � 2 A: (10)

Closed form solutions to (1) with (4)-(6) are available only for special domains.

Therefore, we consider approximate solutions of (1) and hence the approximation of

Problem 2.1.

The discretization is performed by selecting mesh points in the ow domain 
(�)

where the ow variables will be approximated. It is desirable to select this mesh

in such a way that the points are more dense in regions where ow gradients are

expected to be \large" (in order to have more accurate di�erencing) and more coarse

in regions where the ow is nearly constant (in order to save computer time). Other

issues, such as selecting points with no sharp changes in density and with su�cient

resolution to treat the boundary conditions, make the mesh generation a science in

and of itself (see e.g. [26]).

Another constraint on the discretization, to simplify the implementation of a �nite

di�erence scheme, is to use a regular mesh, i.e. a mesh where there exists a bijective

map taking the mesh points to a lattice of points in the computational space. For

example, suppose that M is a C1 mapping,

M : (x; y)! (�; �); (11)

then derivatives in the physical space are easily approximated on the lattice using

the chain rule. Denoting the Jacobian of the mapping by JM, the transformed Euler
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equations become,
@ �F

@�
+
@ �G

@�
= 0; (12)

where

�F = U �Q+ PJ�1M

2
6666664

0
@�

@x
@�

@y

U

3
7777775
; �G = V �Q+ PJ�1M

2
6666664

0
@�

@x
@�

@y

V

3
7777775
; (13)

�Q = J�1MQ; U =
@�

@x
u+

@�

@y
v and V =

@�

@x
u+

@�

@y
v: (14)

A standard �nite di�erence scheme, developed by Beam and Warming [1] is used

to approximate the transformed equations. The scheme introduces a time variable, t

as a means of iterating an initial guess for the solution, to a solution of the steady

state equations. Second and fourth order arti�cial dissipation terms are added for

stability, represented by 	(2) and 	(4), respectively. This scheme is implemented

in the PARC2D code [9]. Several implementation issues are discussed briey below

which are referred to in later sections. Readers interested in more code details or the

actual expressions used for 	(2) and 	(4), should consult [9].

The di�erence scheme produces a system of equations for the update of the ow

variables, � �Qn. Thus, the solution at the nth iteration, �Qn is determined from

�Qn = �Qn�1 +� �Qn�1: (15)

The system matrix produced by the approximation above is quite large due to di�er-

encing in each direction. However, this problem is circumvented using an approximate

factorization into a product of two matrices, each corresponding to di�erencing in one

of the lattice directions. The �nal system has the form:

h
I +�t�� �A

n �r�

�
	
(2)

� +	
(4)

�

�
��JM

i
�h

I +�t�� �B
n �r�

�
	(2)
� +	(4)

�

�
��JM

i
� �Qn =

��t�� �F
n ��t�� �G

n

+�tr�

�
	
(2)

� �	
(4)

� ��r�

�
��

�
JM �Qn

�
+�tr�

�
	(2)
� �	(4)

� ��r�

�
��

�
JM �Qn

�
; (16)

where

�An =
@ �F

@ �Q
( �Qn) and �Bn =

@ �G

@ �Q
( �Qn): (17)
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The subscripted terms �, r and � represent the central, backward and forward

di�erence operators, respectively, in the lattice direction indicated by the subscript.

The converged solution is denoted by QN(x; y) � �Qn� (M(x; y)).

We introduce Bezier curves to parameterize the forebody simulator. Bezier poly-

nomials possess several nice properties when used in approximations. The most im-

portant for the examples presented here are the convex hull and endpoint interpolation

properties (see e.g. Farin [12]). For this problem, we consider a set of two parameter,

q = (q1; q2), Bezier curves

B =
n
� 2 C1[0; 1]

��� �(s) = (�x(s);�y(s; q)); �y(s; q) � �a; s 2 [0; 1]; q 2 IR2
o

(18)

where

�x(s) = aB0;3(s) + 0:6B1;3(s) + 0:8B2;3(s) + bB3;3(s); (19)

�y(s; q) = �aB0;3(s) + q1B1;3(s) + q2B2;3(s) + �bB3;3(s); (20)

and

Bi;r(x) =

0
@ r

i

1
A xi(1� x)r�i: (21)

We also assume a = 0:5 and b = 1:0. We can now introduce the approximate forebody

simulator design problem.

Problem 2.2 (Approximate Forebody Simulator Design) Let
n
Q̂i

og
i=1

be de-

sired ow measurements at S. We assume that the data measurements are given

at the quadrature points, otherwise interpolation must be used. De�ne the objective

function

J N
g (�) =

gX
i=1

ci
QN (xi; �) � Q̂i

2
2
; (22)

where QN (xi; �) represents the approximate solution to (1) in the domain 
(�) at the

quadrature point xi. The approximate forebody simulator design problem is to �nd

�� 2 B such that

J N
g (��) � J N

g (�) for all � 2 B: (23)

Let

Q =
n
(q1; q2) 2 IR2

��� �(�; q1; q2) 2 Bo ; (24)

then the problem can be equivalently stated as �nding (q1�; q
2
�) 2 Q such that

J N
g (q1�; q

2
�) � J N

g (q1; q2) for all (q1; q2) 2 Q: (25)
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2.2 Duct Design Problem

This problem consists of designing the cross-sectional area of a one-dimensional duct

such that, under speci�ed inlet and outlet conditions, it produces a ow which is as

close to a desired transonic ow as possible. The governing conservation laws (steady

state continuity, momentum and energy equations) can be reduced to a single two-

point boundary value problem (BVP) for the velocity. It was shown in [13] that the

velocity u, is the solution of

@

@x
f(u) + g(u;A) = 0; (26)

u(0) = uin and u(1) = uout;

where uin and uout are the velocities at the inlet and outlet of the duct, A is the

cross-sectional area of the duct,

f(u) = u+
�H

u
; g(u;A) =

1

A

 
@

@x
A

! 
�u�

�H

u

!
and � =

 � 1

 + 1
; (27)

where �H and  are ow constants taken to be 1.14 and 1.4, respectively. The Rankine-

Hugoniot condition yields the speed of sound as us =
p
�H. Unique solutions of this

BVP are guaranteed for monotone area functions, therefore, cross-sectional areas, A,

are restricted to

A =

(
A 2 C1(0; 1)

�����A(0) = Ain; A(1) = Aout and
@

@x
A(x) > 0; 8x 2 (0; 1)

)
(28)

for �xed inlet and outlet areas of Ain and Aout. We now describe the optimal design

problem.

Problem 2.3 (Duct Design) Let û(�) 2 L2(0; 1) be a desired transonic ow pro�le

for the duct and de�ne the objective function by

J (A) =
Z 1

0
[u(x;A)� û(x)]

2
dx (29)

where u(�;A) is the solution to (26) corresponding to A. The optimal design problem

is to �nd an A� 2 A such that

J (A�) � J (A) for all A 2 A: (30)

While the BVP has a closed form solution [13], we consider approximations of

(26) and consequently of Problem 2.3 in order to study the more general case. We
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begin by discretizing the duct length into N cells (of length h = 1

N
) with centers,

xj = (j � 1
2
)h; j = 1; : : : ; N and de�ne uNj to be the average velocity in the jth cell,

i.e.

uNj (A) =
1

h

Z xj+
h
2

xj�
h
2

u(x;A)dx: (31)

A system of nonlinear equations for uN (A) =
n
uNj (A)

oN
j=1

can be found by integrating

(26) over each cell,

f
�
u
�
xj +

h
2
;A
��
� f

�
u
�
xj � h

2
;A
��

h
+ g

�
uNj (A); A(xj)

�
= 0; j = 1; : : : ; N;

(32)

where it was assumed that 1

A
@
@x
A was nearly constant over each cell. An approxima-

tion to uN is found by replacing the uxes at the cell edges, f
�
u
�
xj +

h
2

��
, using the

cell center values fj = f(uNj ) and fj+1 = f(uNj+1). Two standard �rst order \Godunov

type" methods are the Enquist-Osher scheme

f

 
u

 
xj +

h

2

!!
� FEO

j+1=2 =

8>>>>>><
>>>>>>:

fj+1 uNj ; u
N
j+1 � us;

fj uNj ; u
N
j+1 � us;

f(us) uNj < us < uNj+1;

fj + fj+1 � f(us) uNj+1 < us < uNj :

(33)

and the arti�cial viscosity scheme

f

 
u

 
xj +

h

2

!!
� FAV

j+1=2 =
1

2
(fj+1 + fj � � (uj+1 � uj)) ; (34)

where � has been selected as 1 for this study. These approximations were used in

[13], but are included above for completeness.

We turn now to the approximation of the cross-sectional area A. The space A
is replaced by a subset of Bezier quadratic polynomials. The properties of Bezier

polynomials allow us to easily impose both the monotonicity requirement and the

matching of inow and outow cross-sectional areas. Consider

B =
n
A 2 C1(0; 1) jA(x) = AinB0;2(x) + qB1;2(x) +AoutB2;2(x);

x 2 (0; 1); q 2 [Ain; Aout]g ; (35)

where Bi;r is de�ned in (21). Thus, B is a one parameter set of curves in A. We

restrict our optimization problem to this set B.
Our �nal step in the approximation of Problem 2.3 is replacing the integral by a

quadrature rule, with the set of quadrature weights and points f(ci; xi)ggi=1. We now

state the approximate design problem.
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Problem 2.4 (Approximate Duct Design) Let fûiggi=1 represent data for a de-

sired transonic ow pro�le in the duct. We assume that the data and the approximate

solution are given at the quadrature points, otherwise interpolation must be used. De-

�ne the objective function

J N
g (A) =

gX
i=1

ci
h
uNi (A)� ûi

i2
(36)

where uN(A) is an approximate solution to (26) with the cross-sectional area A. The

approximate design problem is to �nd an A� 2 B such that

J N
g (A�) � J N

g (A) for all A 2 B: (37)

Note that we can identify any A 2 B with the parameter q 2 Q � [Ain; Aout] which

uniquely represents it. Thus we can equivalently state the problem as to �nd q� 2 Q
such that

J N
g (q�) � J N

g (q) for all q 2 Q: (38)

3 Sensitivity Equation Method

3.1 Trust-Region Algorithms

We shall use a trust-region algorithm for the optimization loop. The reason for

selecting this type of scheme will be clear when we discuss the convergence properties

in Section 4. This is a well known algorithm. However, we give a brief description

below in order to prepare for the formulation of the sensitivity equation method.

The quasi-Newton optimization algorithm produces a sequence of iterates which

are obtained by minimizing a local quadratic model of the objective function. This

model is constructed using the evaluation of the objective function J N
g (qk), its gra-

dient rJN
g (qk) and a secant approximation to its Hessian, Hk at the current iterate

qk. The minimization of this model produces the next iterate qk+1, i.e.

mk(qk+1) = min
sk

mk(qk + sk) = min
sk

�
J N
g (qk) +rJ N

g (qk)
T sk +

1

2
sTkHksk

�
: (39)

Thus the next step is

qk+1 = qk �H�1
k rJ N

g (qk):

It is well known that for su�ciently close initial guesses (and assumptions on the

objective function), the iterates converge superlinearly to the minimum, q�.
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However, the initial guess may not be in this superlinear region. Thus globaliza-

tion strategies are employed to bring the iterates into the superlinear region. It is

desirable to choose strategies which reduce to the quasi-Newton algorithm close to

the minimum. One such strategy is a trust-region algorithm. In this algorithm, a

quantity �, known as the trust-region radius, is used to measure the region in which

the local quadratic model, mk, is \trusted" as an approximation of the actual ob-

jective function, J N
g . Thus, the next iterate, qk+1, is now found by minimizing the

model in this region, i.e.

mk(qk+1) = min
kskk��k

mk(qk + sk): (40)

where �k is the trust-region radius at the kth iteration.

A heuristic for changing the trust-region radius needs to be developed which in-

creases �k when the model prediction is good and decreases �k when the model pre-

diction is poor. One such strategy uses the ratio,

�k =
J N
g (qk)� J N

g (qk+1)

mk(qk)�mk(qk+1)
(41)

which is the ratio of the computed reduction to the reduction predicted by the model.

If this ratio is small (or negative), then the model did a poor job of predicting J N
g

and the trust-region is decreased. Whereas, if the ratio is near 1, then the model did

very well at predicting J N
g and the trust-region radius is increased.

We present the resulting trust-region algorithm below.

Algorithm 3.1 (Trust-Region)

Select an initial guess q0 2 Q, an initial trust-region radius �0 and constants 0 < �1 <

�2 < 1 and 0 < 1 < 1 < 2. Compute J N
g (q0), rJN

g (q0) and select or initialize H0.

Do k = 0; 1; : : :, until \convergence"

1. Determine the approximate solution sk to equation (40). We chose the optimally

constrained hook-step method [11] to do this.

2. If �k < �1, then set �k+1 2 (0; 1�k) and qk+1 = qk, J N
g (qk+1) = J N

g (qk),

rJN
g (qk+1) = rJ N

g (qk) and Hk+1 = Hk.

3. If �1 < �k < �2, then set �k+1 2 (0; �k] and qk+1 = qk + sk. Compute J N
g (qk+1),

rJN
g (qk+1) and the update Hk+1.
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4. If �2 < �k, then set �k+1 2 [�k; 2�k] and qk+1 = qk + sk. Compute J N
g (qk+1),

rJN
g (qk+1) and the update Hk+1.

Continue

3.2 Design Sensitivities

In order to apply a gradient based optimization algorithm, such as the trust-region

algorithm described above, we need to consider methods for computing the gradient

of J N
g . In this discussion, we consider �nding the gradient of JN

g (or a suitable

approximation) with respect to the single design parameter q. This discussion can be

easily extended to �nd the gradient of J N
g with respect to multiple design parameters.

A straight forward approach is to use a �nite di�erence approximation, e.g.

@

@q
J N
g (q) � J N

g (q +�q)� J N
g (q)

�q
: (42)

Unfortunately, this approach may not be practical for problems where the approx-

imation of the PDE is computationally expensive, and is overly complex in shape

optimization problems due to the necessity of computing mesh sensitivities. One way

of alleviating the computational burden is to use design sensitivities, quantities which

describe the inuence of the design variables on the ow variables. For example, we

can directly compute the gradient by di�erentiating (36) as

@

@q
J N
g (q) = 2

gX
i=1

ci
h
uNi (q)� ûi

i @
@q
uNi (q): (43)

The quantity @
@q
uN =

n
@
@q
uNi

oN
i=1

is the design sensitivity for the discretized ow uN .

There are several ways to compute this sensitivity. As above, one might use �nite

di�erences, yielding the approximation

@

@q
uN(xi; q) � uN(xi; q +�q)� uN(xi; q)

�q
: (44)

When the discretization is parameter dependent, it is easier to compute this approx-

imation using,

@

@q
uN (xi; q) � uN(xi +

@
@q
M(xi)�q; q+�q)� uN(xi; q)

�q

� @

@x
uN(xi; q)

@

@q
M(xi) (45)
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in order to avoid interpolating back to the unperturbed mesh. This approach has the

advantage that it may be possible to select a step size �q using error estimates for

uN . However, it is as computationally expensive as computing �nite di�erences on

J N
g .

A more e�cient approach can be obtained by di�erentiating the simulation scheme

used to approximate the ow (the discrete sensitivity approach). For example, in

the FBS design problem, the simulation scheme (16) could be di�erentiated with

respect to q, leading to a numerical scheme for terms like @
@q
uN . Since the chain rule

must be used to carry this out, the resulting scheme for the sensitivities contains

terms similar to those found in the simulation scheme. Thus, the sensitivities can

be computed e�ciently along with the ow. A disadvantage of this approach is that

when the discretization is parameter dependent, as in shape optimization problems,

then derivatives of the discretization (terms like @
@q
M) need to be considered, see e.g.

[20].

An alternative approach is based on di�erentiating the original ow equation with

respect to the design parameter and then approximating the resulting sensitivity equa-

tion. The result is
�

@
@q
u
�N;M

, where the superscript N refers to the approximation

of the ow equation and the superscript M refers to the approximation of the sen-

sitivity equation. Since this approach interchanges the order of di�erentiation and

approximation, no mesh sensitivities are required. Furthermore, it has been shown

[2] that applying the same approximation scheme to the sensitivity equation leads to

similar computational advantages as the discrete approach described above. More-

over, additional computational savings could be obtained by applying a scheme which

takes advantage of the linearity of the sensitivity equation. A potential disadvantage

of this approach, however, is that in general @
@q
uN 6=

�
@
@q
u
�N;M

, even if the same

approximation scheme is used for both the ow and sensitivity equations.

However, if we consider the gradient of the in�nite dimensional objective function,

@

@q
J (q) = 2

Z 1

0
[u(x;A)� û(x)]

@

@q
u(x;A); (46)

then using the sensitivity equation approach provides an approximation of this gra-

dient, i.e.

@

@q
J (q) �

 
@

@q
J
!N;M

g

(q) = 2
gX

i=1

ci
�
uNi (q)� ûi

� @

@q
u

!N;M

i

(q): (47)

Thus, we have reason to expect that this approach could produce feasible gradients

14



for the optimization scheme. These two sensitivity approaches are described in detail

in later sections using concrete examples.

3.3 Sensitivity Equation Method

The sensitivity equation method couples a trust-region optimization algorithm with

gradient evaluations provided by approximating the sensitivity equation. Thus we

consider applying Algorithm 3.1 with the following quadratic model,

 k(qk+1) = min
kskk��k

 k(qk + sk) = min
kskk��k

�
J N
g (qk) + gTk sk +

1

2
sTkHksk

�
; (48)

Note that we replace the quadratic model mk by  k to emphasize the fact that rJN
g

is approximated by gk, computed as
�
@
@q
J
�N;M

g
(qk).

The intent is to use the robustness of the trust-region optimization algorithm to

compensate for the non-consistent gradients. The result is an optimal design method

which is often more e�cient and considerably easier to implement than current meth-

ods. In the sections below, we discuss convergence issues and describe the implemen-

tation of this method.

4 Convergence Issues

De�nition 4.1 A numerical scheme is said to produce consistent derivatives with

respect to approximations N (for the states) and M (for the sensitivities) if

@

@q
J N
g (�) =

 
@

@q
J
!N;M

g

(�) (49)

This is exactly the case for the discrete sensitivity approach, since one actually de�nes

(computes)
�
@
@q
J
�N;M

g
(�) to be @

@q
J N
g (�).

De�nition 4.2 A numerical scheme is said to produce asymptotically consistent

derivatives with respect to approximations N (for the states) and M (for the sensi-

tivities) if ������
@

@q
J N
g (q)�

 
@

@q
J
!N;M

g

(q)

������! 0; 8q 2 Q0: (50)

is satis�ed as the approximations N and M are re�ned.

We now consider the convergence of the sensitivity equation method. To begin

with, we assume that the following hypotheses hold,

15



(H1) For a given q0 in the design space Q, letQ0 be an open convex subset containing

the level set of J N
g at q0, i.e.

L0 =
n
q 2 Q

��� J N
g (q) � J N

g (q0)
o
� Q0 � Q: (51)

(H2) J N
g is bounded below

(H3) J N
g is Frechet di�erentiable on Q0

(H4) The Frechet derivative of J N
g , denoted by rJN

g , is Lipschitz continuous on Q0

with Lipschitz constant L, i.e.

rJ N
g (q1)�rJ N

g (q2)
 � L

q1 � q2
 8q1; q2 2 Q0: (52)

(H5) The approximate gradient, gk is asymptotically consistent to rJ N
g (qk).

(H6) There exists a constant c1 2 (0; 1] such that

c1kgkkkskk � h�gk; ski � kgkkkskk 8k = 1; 2; : : : (53)

(H7) There exist constants c2; c3 2 (0;1) such that

�c2 hd; di � hHkd; di � c3 hd; di 8k = 1; 2; : : : (54)

The following discussion parallels the proof given in [7] which treats the use of

trust-region algorithms with inexact gradient and function values. This discussion

makes use of the fact that we seek the minimum of J N
g and have asymptotically

consistent derivatives.

Lemma 4.1 Under assumptions (H6) and (H7), Algorithm 3.1 produces iterates

which satisfy

 k(qk)�  k(qk+1) � 1

2
c1kgkkmin

(
�k;

c1kgkk
c3

)
: (55)

16



Proof Note that since  k(qk) = J N
g (qk),

 k(qk)�  k(qk+1) = �hgk; ski � 1

2
hHksk; ski : (56)

Now, let sk = kskk sk
kskk

� a�dk, then a� solves

min
0�a��k

a hgk; dki+ 1

2
a2 hHkdk; dki : (57)

We can break this up into two cases, when hHkdk; dki � 0 and when hHkdk; dki < 0.

Case 1: Assume hHkdk; dki � 0, then either

a� = � hgk; dki
hHkdk; dki ;

in which case

 k(qk)�  k(qk+1) =
hgk; dki
hHkdk; dki hgk; dki �

1

2

hgk; dki2
hHkdk; dki2

hHkdk; dki

=
1

2

hgk; dki2
hHkdk; dki �

1

2
c21
kgkk2
c3

using hypotheses (H6) and (H7), or

a� = �k

in which case

�k < � hgk; dki
hHkdk; dki

implies

 k(qk)�  k(qk+1) = ��k hgk; dki � 1

2
�2k hHkdk; dki

� ��k hgk; dki + 1

2
�k hgk; dki � 1

2
c1�kkgkk

by hypothesis (H6).

Case 2: Assume hHkdk; dki < 0, then a� = �k. Therefore

 k(qk)�  k(qk+1) = ��k hgk; dki � 1

2
�2k hHkdk; dki

� ��k hgk; dki � c1�kkgkk � 1

2
c1�kkgkk:

4
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Lemma 4.2 Assume (H7) holds, then

lim inf
k!1

kgkk > 0 and lim
k!1

�k = 0 (58)

imply

lim
k!1

� hsk; gki
kskkkgkk = 1: (59)

Proof It was shown [11] that, if kskk = �k, then the solution to (48) is given by

s(�k), where

s(�) = � (Hk + �I)
�1
gk

and �k is the unique real number that satis�es ks(�k)k = �k. Therefore, if �k ! 0,

then �k !1 (since Hk is bounded, by (H7)). Thus sk ! ���1k gk. 4

Lemma 4.3 Let J N
g satisfy (H3), (H4) and (H7), then the iterates satisfy

[ k(qk)�  k(qk+1)]�
h
J N
g (qk)� J N

g (qk+1)
i
� 1

2
(c2 + L) kskk2�

D
gk �rJN

g (qk); sk
E
:

(60)

Proof Using the Cauchy-Schwartz inequality and (H3), we obtain

J N
g (qk+1)� J N

g (qk) =
Z 1

0

D
rJN

g (qk + �sk); sk
E
d�

=
D
rJ N

g (qk); sk
E
+
Z 1

0

D
rJN

g (qk + �sk)�rJ N
g (qk); sk

E
d�

�
D
rJ N

g (qk); sk
E
+
Z 1

0

rJ N
g (qk + �sk)�rJ N

g (qk)
 kskkd�:

By the Lipschitz hypothesis (H4),

J N
g (qk+1)� JN

g (qk) �
D
rJ N

g (qk); sk
E
+
Z 1

0
Lk�skkkskkd�

=
D
rJ N

g (qk); sk
E
+
1

2
Lkskk2:

Thus, using (H7),

[ k(qk)�  k(qk+1)]�
h
J N
g (qk)� J N

g (qk+1)
i

� �hgk; ski � 1

2
hHksk; ski +

D
rJ N

g (qk); sk
E
+
1

2
Lkskk2

� �
D
gk �rJN

g (qk); sk
E
+
1

2
(c2 + L) kskk2

which completes the proof. 4
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Lemma 4.4 Assume J N
g satis�es (H2), (H3) and (H4), and assume (H7) holds,

then rJ N
g is bounded on L0.

Proof Let c be a constant such that J N
g (q) � c;8q 2 Q0 (as guaranteed by (H2)).

Assume to the contrary that there exists a point �q 2 L0 such that

rJ N
g (�q)

2 > 8L
�
J N
g (q0) � c

�
:

De�ne �s = � �
2L
rJN

g (�q), where we choose � small enough so that �q + �s 2 Q0. Then

J N
g (�q)� J N

g (�q + �s) = �
Z 1

0

D
rJN

g (�q); �s
E
d� �

Z 1

0

D
rJN

g (�q + ��s)�rJN
g (�q); �s

E
d�

� �

2L

rJ N
g (�q)

2 � 1

2
Lk�sk2

� �

4L

rJ N
g (�q)

2 �1� �

2

�
>

�

4L

�
1� �

2

� h
8L
�
J N
g (q0)� c

�i

This is positive for � 2 (0; 2), thus JN
g (�q) > J N

g (�q+ �s), which implies �q+ �s 2 L0. In

addition

J N
g (�q)� J N

g (�q + �s) > J N
g (q0)� c

holds, but this is a contradiction since �q and �q + �s are in L0. 4

Theorem 4.1 Assume J N
g satis�es (H2), (H3) and (H4). Furthermore, assume the

approximate gradient satis�es conditions (H5) and (H6) and that the update is con-

structed so that (H7) holds. Then, for a su�ciently �ne discretization, the sensitivity

equation method produces a sequence of iterates such that

lim inf
k!1

kgkk = 0: (61)

Proof Assume to the contrary that lim infk!1 kgkk > 0 and de�ne �k such that

cos(�k) =
h�gk; ski
kgkkkskk

and wk 2 Q such that

wk =

8<
:

0 sin(�k) = 0
1

sin(�k)

�
sk
kskk

+ cos(�k)
gk
kgkk

�
sin(�k) 6= 0

:

Then hgk; wki = 0 by construction, and

D
gk �rJ N

g (qk); wk

E
= �

D
rJN

g (qk); wk

E
:

19



If sin(�k) 6= 0, then kwkk = 1 and

sk = kskk
 
� cos(�k)

gk

kgkk + sin(�k)wk

!
: (62)

Let K denote the set of successful iterations, then

�k =
J N
g (qk)� J N

g (qk+1)

 k(qk)�  k(qk+1)
> �1

for each k 2 K. Lemma 4.1 implies

J N
g (qk)� J N

g (qk+1) � �1c1

2
kgkkmin

(
�k;

c1kgkk
c3

)
:

Since J N
g is bounded below, by (H2), the above condition implies limk!1;k2K �k = 0.

Therefore, as �k is decreased in unsuccessful iterations, limk!1 �k = 0. We now have

the conditions for Lemma 4.2, and

lim
k!1

h�gk; ski
kgkkkskk = 1:

Thus limk!1 cos(�k) = 1 and limk!1 sin(�k) = 0.

Consider the expression

1� �k =
 k(qk)�  k(qk+1)�

�
J N
g (qk)� J N

g (qk+1)
�

 k(qk)�  k(qk+1)
;

by Lemma 4.3 and the de�nition of  k, we get

1 � �k �
1

2
(c2 + L)kskk2 �

D
gk �rJN

g (qk); sk
E

h�gk; ski � 1

2
hHksk; ski :

Using hypothesis (H7),

1� �k <

1

2
(c2 + L)kskk2 �

D
gk �rJ N

g (qk); sk
E

h�gk; ski :

Substituting expression (62) and using kskk < �k, we get

1 � �k �
1

2
(c2 + L)�k � cos(�k)

kgkk

D
gk �rJN

g (qk); gk
E
�
D
gk �rJ N

g (qk); wk

E
sin(�k)

kgkk cos �k :

By Lemma 4.4 and the Cauchy-Schwarz inequality,
D
rJ N

g (qk); wk

E
is bounded and

we consider the limit as k !1,

lim
k!1

1� �k = lim
k!1

D
gk � J N

g (qk); gk
E

kgkk2 �
gk �J N

g (qk)


kgkk :
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Since lim infk!1 kgkk > 0 and gk is asymptotically consistent, we can select a su�-

ciently �ne discretization such that

lim
k!1

1 � �k < 1 � �2:

Hence, �k > �2 which implies �k+1 > �k, a contradiction. 4

5 Duct Design Problem

In this section, we use the duct design problem to illustrate the implementation of the

sensitivity equation method. To begin with, we will introduce the discrete approach

for �nding design sensitivities in order to compare it with the sensitivity equation

approach.

5.1 Discrete Sensitivities

To obtain an algorithm for the sensitivities @
@q
uN (q) =

n
@
@q
uNj (q)

oN
j=1

, the system of

nonlinear equations (32) is di�erentiated, yielding

�Fj+1=2 � �Fj�1=2

h
+ �g

 
uNj ;

@

@q
uNj ; A(xj);

@

@q
A(xj)

!
= 0: (63)

where �Fj+1=2 is determined by the scheme used to compute the ow. If the Enquist-

Osher scheme was used,

�FEO
j+1=2 =

8>>>>>><
>>>>>>:

�fj+1 uNj ; u
N
j+1 � us;

�fj uNj ; u
N
j+1 � us;

0 uNj < us < uNj+1;

�fj + �fj+1 uNj+1 < us < uNj ;

(64)

or if the arti�cial viscosity scheme was used,

�FAV
j+1=2 =

1

2

 
�fj+1 + �fj � �

 
@

@q
uNj+1 �

@

@q
uNj

!!
; (65)

where �fj = �f(uNj ;
@
@q
uNj ),

�f

 
u;

@

@q
u

!
=

 
1�

�H

u2

!
@

@q
u (66)

and

�g

 
u;

@

@q
u;A;

@

@q
A

!
=

@

@q

 
1

A

@

@x
A

! 
�u�

�H

u

!
+

 
1

A

@

@x
A

! 
� +

�H

u2

!
@

@q
u: (67)
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This di�erentiated scheme can now be used to compute @
@q
uN .

5.2 Sensitivity Equation

We now present the implementation for the sensitivity equation approach. We begin

by di�erentiating the ow equation (26) with respect to the parameter q. Thus

@

@x
�f

 
u;

@

@q
u

!
+ �g

 
u;

@

@q
u;A;

@

@q
A

!
= 0 (68)

@

@q
u(0) = 0 and

@

@q
u(1) = 0 (69)

is the sensitivity equation for this problem. Note that the sensitivity equation is a

linear equation with variable coe�cients (determined by u). There has been little

analysis of numerical schemes to approximate equations of this type. However, for

this two point boundary value problem, the same numerical schemes (Enquist-Osher

and arti�cial viscosity) provide convergent algorithms. As in the approximation of

(26), we consider
�
@
@q
u
�N
j
to be the average sensitivity in the jth cell. A system of

nonlinear equations for
�
@
@q
u
�N

(q) =
��

@
@q
u
�N
j
(q)
�N
j=1

can be found by integrating

(68) over each cell,

�f
�
u(xj +

h
2
); @

@q
u(xj +

h
2
)
�
� �f

�
u(xj � h

2
); @

@q
u(xj � h

2
)
�

h

+ �g

0
@uNj ;

 
@

@q
u

!N

j

; A(xj);
@

@q
A(xj)

1
A = 0; (70)

j = 1; : : : ; N , where we assume A and @
@q
A are nearly constant over each cell. As

before, the terms �f
�
u(xj +

h
2
); @

@q
u(xj +

h
2
)
�
are replaced by the cell center values �fj

and �fj+1. Using the Enquist-Osher scheme, we obtain

�FEO
j+1=2 =

8>>>>>><
>>>>>>:

�fj+1 uNj ; u
N
j+1 � us;

�fj uNj ; u
N
j+1 � us;

�f(us; (
@
@q
u)s) uNj < us < uNj+1;

�fj + �fj+1 + �f(us; (
@
@q
u)s) uNj+1 < us < uNj ;

(71)

and obtain

�FAV
j+1=2 =

1

2

0
@ �fj+1=2 + �fj � �

0
@
 
@

@q
u

!N

j+1

�
 
@

@q
u

!N

j

1
A
1
A (72)
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for the arti�cial viscosity scheme. It is obvious that the approximation of the sensi-

tivity equations depends on the approximation of the ow equations. As described

earlier, we use the notation
�
@
@q
u
�N;M

to represent using scheme N to approximate

the ow equation and schemeM to approximate the sensitivity equation.

5.3 Convergence Results

The convergence result provided in Theorem 4.1 can be proved for the case when

the arti�cial viscosity scheme is used to approximate the ow and the Enquist-Osher

scheme is used to approximate the sensitivities in Algorithm 3.1. For this problem,

we assume (the (H1) in Theorem 4.1) that

Q = [Ain; Aout] ; Q0 = (Ain; Aout) ;

and

L0 =
n
q 2 Q

���J NAV
g (q) � J NAV

g (q0)
o
:

The objective function J NAV
g given above is obviously bounded below (by zero if all

of the quadrature weights are nonnegative) satisfying (H2). The hypothesis (H3), the

di�erentiability of

J NAV
g (q) =

gX
i=1

ci
�
uNAV (xi; q)� û(xi)

�2

on Q0 and hypothesis (H4), the Lipschitz continuity of the derivative, follow from the

following

Lemma 5.1 The approximate solution uNAV is di�erentiable and the derivative is

Lipschitz continuous on Q0.

Proof The approximate solution, uNAV is the root of the nonlinear equations

W
�
uNAV ; q

�
=
h
FAV
j+1=2

�
uNAV ; q

�
� FAV

j�1=2

�
uNAV ; q

�i
+ gj

�
uNAV ; q

�
= 0; (73)

where FAV
j+1=2 and g are C

1 functions of their arguments (for uNAV > 0). Then by the

implicit function theorem, the map

q! uNAV (q)

is Lipschitz continuously di�erentiable. 4
We point out that the di�erentiability of the approximate objective functional is

strongly dependent on the discretization scheme used in the approximation. For

23



example, the objective functional associated with a Godunov approximation of the

ow is not di�erentiable, a result of matching a parameter dependent discontinuity on

a discrete set of points [4]. Finding feasible optimization strategies for this problem

has been the focus of recent work, see e.g. [4], [19] and [23]. However, for the

purpose of this discussion, the arti�cial viscosity scheme provides a smooth enough

approximate objective function.

The hypothesis (H5) is guaranteed (for some discretization level) by the asymptotic

consistency shown below.

Theorem 5.1 For the one dimensional Euler equations, the derivative
�

@
@q
J
�NAV ;MEO

g
,

where the ow is approximated using the arti�cial viscosity approximation and the

sensitivities are approximated using the Enquist-Osher scheme, is asymptotically con-

sistent to @
@q
J NAV
g .

Proof Consider the norm used in the de�nition of asymptotic consistency:������
@

@q
J NAV
g �

 
@

@q
J
!NAV ;MEO

g

������ �
������
@

@q
J NAV
g �

 
@

@q
J
!NAV ;MAV

g

������
+

������
 
@

@q
J
!NAV ;MAV

g

�
 
@

@q
J
!NAV ;MEx

g

������
+

������
 
@

@q
J
!NAV ;MEx

g

�
 
@

@q
J
!NAV ;MEO

g

������ :
The �rst term on the right hand side vanishes since using the arti�cial viscosity

scheme for approximating both the ow and sensitivity equations leads to consistent

derivatives. The last two terms go to zero as the approximations NAV ,MAV andMEO

are re�ned, since the arti�cial viscosity and Enquist-Osher schemes converge when

used to approximate the sensitivity equation, ( @
@q
u)NAV ;MEx is the exact solution to

the sensitivity equation given uNAV . 4

The hypothesis (H6) can be enforced by the optimization algorithm by rejecting

steps which violate this condition and shrinking the trust-region radius. This proce-

dure eventually creates a step which satis�es (H6), since the limit of this procedure

would produce a step in the steepest descent direction.

Finally, (H7) can be enforced by the secant update strategy. Therefore, we have

shown that these approximation schemes satisfy the conditions of Theorem 4.1. Nu-

merical computations using these sensitivity schemes are provided below.
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Figure 3: Design Sensitivity Approximations Using Enquist-Osher Scheme

5.4 Numerical Results

The sensitivity of the velocity with respect to the Bezier parameter, q, is presented us-

ing the numerical schemes described above. For this computation, the cross-sectional

area corresponds to an element of B (see (35)) with q = 1:37125. The interval [0; 1]

is divided into 45 cells. In Figure 3, the sensitivity solution using the Enquist-Osher

scheme to compute both the ow uNEO and the sensitivity
�

@
@q
u
�NEO ;MEO

is compared

with the closed form sensitivity solution. In addition, the sensitivities computed

via �nite di�erences of Enquist-Osher solutions using a �nite di�erence step size of

�q = (1� 10�6) q are also provided. Excellent agreement is seen for both of these

methods. The only discrepancy is in the cell to the left of the shock, where numerical

dissipation appears in the ow solution.

The corresponding design sensitivities which are computed using only the arti�cial

viscosity schemes are shown in Figure 4. As above, the agreement is excellent except

where dissipation errors appear in the ow approximations. In this case, these errors

appear over more cells near the shock.

Note that the computation of these sensitivities were performed e�ciently, rela-
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Figure 4: Design Sensitivity Approximations Using Arti�cial Viscosity Scheme

tive to the cost of a ow approximation. The ow approximation requires solving

a system of nonlinear equations. The sensitivity approximation, on the other hand,

only requires solving a linear system since the sensitivity appears only linearly in the

de�nition of �f and �g. Moreover, if the Newton method is used to solve the nonlin-

ear system, then the linear system is already available in factored form. Therefore,

the sensitivities can be computed using less computational time than required for

one Newton step. Computational e�ciencies such as this can be missed if the ow

algorithm is simply di�erentiated.

Note that as long as
�
@
@q
u
�
s
is bounded,

�f

 
us;

 
@

@q
u

!
s

!
=

 
1 �

�H

u2s

! 
@

@q
u

!
s

= 0;

since �H = u2s. Thus, one observes that the numerical algorithms to compute ei-

ther @
@q
uNEO or

�
@
@q
u
�NEO ;MEO

are equivalent. This leads to the fact that using the

Enquist-Osher scheme to approximate both the ow and sensitivity equations pro-

duces consistent gradients. In addition, it is easily seen that using the arti�cial

viscosity scheme to approximate both equations also produces consistent gradients.
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Table I: A Comparison of Gradients at the Optimum for Various Mesh Sizes

N q� J NAV
g (rqJ )

NAV ;MEO

g

15 1.3398 0.011707 -0.056521

45 1.3437 0.004800 -0.001566

135 1.3525 0.002485 -0.000012

225 1.3543 0.002476 0.007602

315 1.3553 0.002645 0.026731

405 1.3554 0.002816 0.001584

However, if the arti�cial viscosity scheme is used to approximate the ow and the

Enquist-Osher scheme is used to approximate the sensitivity equations, the gradients

are not consistent but asymptotically consistent.

Numerical results for this asymptotically consistent case are provided in Table I.

6 Forebody Simulator Design Problem

We now describe the implementation of the sensitivity equation method for the fore-

body simulator design problem described in Section 2. As in the duct design problem,

we begin by presenting the equations which comprise the discrete sensitivity scheme

in order to compare and contrast the two methods. Unlike the duct problem, we

have no theoretical convergence results for the FBS design problem. However, the

numerical experiments below show that the SEM still converges.

6.1 Discrete Sensitivities

Di�erentiating the numerical scheme (16) with respect to a design parameter, repre-

sented by q, leads to the following scheme:

h
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@

@q
(JM �Qn): (74)

The equation representing the boundary conditions are also di�erentiated. Note

that the above sensitivity scheme requires derivatives of the mapping, @
@q
M (denoted

as mesh sensitivities) and the dissipation terms, @
@q
	(2) and @

@q
	(4). Evaluation of

@
@q
M is given by di�erentiating the scheme which determinesM, see e.g. [20]. Other

methods for approximating @
@q
M have also been investigated, see e.g. [25]. We see

from (74) that terms containing these expressions represent a signi�cant portion of

the computational e�ort, aside from the fact that @
@q
M, @

@q
	(2) and @

@q
	(4) themselves

need to be determined.

6.2 Sensitivity Equation

The sensitivity equation approach to computing design sensitivities is presented be-

low. To begin with, we di�erentiate the Euler equations and associated boundary

conditions with respect to the design parameter q, which leads to:

@Fq

@x
+
@Gq

@y
= 0 (75)

where

Fq =
@

@q
uQ+ uQq +

2
6666664

0
@
@q
P

0
@
@q
Pu+ P @

@q
u

3
7777775
;

Gq =
@

@q
vQ+ vQq +

2
6666664

0

0
@
@q
P

@
@q
Pv + P @

@q
v

3
7777775
; Qq =

2
6666664

@
@q
�

@
@q
(�u)

@
@q
(�v)
@
@q
E

3
7777775
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and where

@

@q
u =

"
@

@q
(�u)� @

@q
�
�u

�

#
=� and

@

@q
v =

"
@

@q
(�v)� @

@q
�
�v

�

#
=�;

since � 6= 0.

We are now free to apply any appropriate scheme to solve (75). In particular, it is

possible to use a method which takes advantage of the linearity of the sensitivity equa-

tion. However, in this work, the same scheme used to solve the ow equations is used

to approximate the sensitivity equations, which leads to an e�cient computational

scheme as in the discrete approach [2]. This scheme is described below.

This equation may now be transformed to generalized coordinates, so that the �nite

di�erencing can be done more easily. It makes sense to use the same transformation

(which is equivalent to using the same mesh) that was used in the solution of the

Euler equations. Thus the resulting system is

@ �Fq
@�

+
@ �Gq

@�
= 0; (76)

where

�Fq = U �Qq + Uq
�Q+

@
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U

3
7777775
+ PJ�1M

2
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0

0

0
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3
7777775
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@�
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V

3
7777775
+ PJ�1M

2
6666664

0

0

0

Vq

3
7777775
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where

U = r� � (u; v) and Uq = r� � ( @
@q
u;

@

@q
v);

and

V = r� � (u; v) and Vq = r� � ( @
@q
u;

@

@q
v)

It can be shown that

�A =
@ �F

@ �Q
=
@ �Fq

@ �Qq

; and �B =
@ �G

@ �Q
=
@ �Gq

@ �Qq

;
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so that the discretization has the same factored form as the Euler equations, thus

h
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Since the left hand side matrices are the same, a right hand side vector needs to

be formed for each design sensitivity. In addition, the boundary condition type is

the same for both the Euler and sensitivity equations. The boundary conditions are

determined using implicit di�erentiation.

Note that this scheme is similar to the discrete sensitivity approach. However, since

the approximation is applied after the di�erentiation, there are no mesh sensitivity

or dissipation sensitivity terms. The other obvious di�erence is that the boundary

condition on the parameter dependent boundary is di�erent.

6.3 Boundary Conditions

The boundary conditions for the sensitivity equation (75) are provided below for the

case where the forebody simulator is described by a two parameter Bezier curve (18){

(20). Extensions to other forebody descriptions will be obvious. The appropriate

conditions are obtained by di�erentiating the corresponding boundary conditions for

the Euler equations. For example, at the inlet, the ow Qin is prescribed and will not

vary as the forebody parameters q = (q1; q2) are changed, thus

Qq = 0

at the test cell inow. The walls are treated in a similar fashion. However, the

boundary condition at the forebody simulator surface requires more attention. This

is because the points where the condition is evaluated are parameter dependent.

We study the treatment of condition (5) in detail. The normal vector to the

forebody surface is

n̂ =

 
� @

@s
�y(s; q);

@

@s
�x(s)

!
=

vuut @

@s
�x(s)

!2

+

 
@

@s
�y(s; q)

!2
: (78)
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Thus, the boundary condition (5) can be written as

�u (�x(s);�y(s; q); q) @
@s

�y(s; q) + v (�x(s);�y(s; q); q)
@

@s
�x(s) = 0: (79)

The corresponding sensitivity equation boundary condition for the �rst parameter,

q1, can be obtained via di�erentiation, i.e.,
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This is simply a nonhomogeneous version of condition (5), namely, 
@
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Using the same techniques, the boundary conditions corresponding to (6) are:
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The analogous boundary conditions for q2 are obvious.

6.4 Numerical Results

The sensitivity equation approach, which computes design sensitivities for the two

dimensional Euler equation is illustrated below. In this implementation, a right hand

side vector for each design sensitivity is formed along with the corresponding vector

for the ow approximations. The updates for the ow and sensitivity variables are

obtained simultaneously, exploiting the fact that the left hand side matrices are the

same.

The design sensitivities with respect to the �rst Bezier parameter q1 were computed

for a forebody described by the curve

�̂ = (x̂(s); ŷ(s)) ; s 2 [0; 1];
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where

x̂(s) = 0:0B0;3(s) + 0:1B1;3(s) + 0:55B2;3(s) + 1:0B3;3(s);

ŷ(s) = �aB0;3(s) + q1B1;3(s) + q2B2;3(s) + �bB3;3(s);

q1 = 0:1, q2 = 0:15, �a = 0 and �b = 0:2. This curve is twice as long in the x-direction

as the admissible forebody simulators given in B (see (18)). Under a uniform inlet

ow pro�le described by the inlet Mach number, Ma = 2:0, the approximate ow

variables and sensitivities are computed on a 43 � 49 mesh. The sensitivity of the

x-component of momentumwith respect to the Bezier parameter q1, computed using

the sensitivity equation approach and the �nite di�erence approach (for 4 di�erent

step sizes) are plotted along the outow plane in Figure 5. The corresponding plots

for the Energy sensitivity are provided in Figure 6. Observe that the step size of

0:00001 produces noisy sensitivity values close to the forebody (presumably due to

round-o� errors). A larger step size of 0.01 gives the best results (when compared

to the sensitivity equation approach) near the shock location. The best qualitative

behavior appears when the step size is 0.001. These �gures demonstrate the di�culty

of obtaining a satisfactory step size at all resolution levels in the ow domain.

A model forebody simulator design problem is discussed below. To begin with,

we seek the optimum value of the inlet Mach number and two Bezier parameters

( (q1; q2), describing a shortened forebody simulator in the admissible set B) which
minimize the approximate cost functional JN

g (given in equation (25)). The ow

data Q̂ to be matched is given by the ow QN corresponding to the forebody shape

�̂ described above. We point out that the arti�cial dissipation in the ow solver

produces a \smearing" e�ect on the ow variables. Therefore, based on the results

for the duct design problem, we expect a su�ciently smooth approximate cost func-

tional. Furthermore, the comparison of the sensitivities in Figures 5 and 6 lead us to

believe that the sensitivity equation approach may produce asymptotically consistent

derivatives.

The sensitivity equation method was applied to the FBS design problem with

initial values of the parameters: Ma = 2:0, q1 = 0:10 and q2 = 0:15. These parameters

correspond to those used to generate Q̂ (even though that forebody is longer). We

present the iteration history in Table II. Observe that there is a drastic reduction

in the approximate cost functional in the �rst three iterations. The iteration history

for the x-component of momentum is given in Figure 7. Note that the front end of
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Figure 5: Comparison of Sensitivities at Outow: x-Component of Momentum

0 1 2 3

0

2

4

6

Exit Plane Coordinate

S
en

si
tiv

ity

Step Size 0.01

0 1 2 3

0

2

4

6

Exit Plane Coordinate

S
en

si
tiv

ity

Step Size 0.001

0 1 2 3

0

2

4

6

Exit Plane Coordinate

S
en

si
tiv

ity

Step Size 0.0001

0 1 2 3

0

2

4

6

Exit Plane Coordinate

S
en

si
tiv

ity

Step Size 0.00001

Figure 6: Comparison of Sensitivities at Outow: Energy
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Table II: Shortened Forebody Optimization

Iteration Ma q1 q2 Cost Functional Gradient

0 2.00000 0.10000 0.15000 3.2339 27.1283

1 2.00108 0.14608 0.17177 1.6000 11.6285

2 2.01054 0.26846 0.14152 0.3332 3.7955

3 2.00897 0.30765 0.13671 0.2334 0.4621

4 2.01027 0.30139 0.14007 0.2306 0.5963

5 2.01307 0.29367 0.14737 0.2289 0.6861

6 2.01670 0.28891 0.15564 0.2271 0.5009

7 2.01900 0.29011 0.15921 0.2249 0.1513

8 2.01940 0.29278 0.15821 0.2237 0.0576

9 2.01936 0.29420 0.15669 0.2232 0.0571

10 2.01952 0.29439 0.15604 0.2230 0.0275

11 2.01994 0.29417 0.15603 0.2229 0.0173

12 2.02006 0.29415 0.15609 0.2229 0.0153

the forebody simulator becomes more blunt during the �rst two iterations in which

a stagnation region is set up in front of the FBS. This has the e�ect of moving the

shock forward, which comes close to the shock location created by the long forebody.

The remaining iterations are used to \�ne tune" the solution near the FBS. The

comparison of the optimal forebody simulator to the ow generated by the long

forebody is displayed in Figure 8. Notice that the shock location is the same in both

ows.

In the optimization above, the initial Hessian was computed using forward dif-

ferences. This adds some initial expense in the hope for fewer iterations. However,

without this technique, using the identity matrix as the initial Hessian, the iteration

converged in �fteen iterations. Therefore, neither technique showed an advantage.

6.5 Conclusions

While no rigorous proof of asymptotically consistent gradients has been shown for

Euler equations, numerical evidence in [3] suggests that the gradients may indeed

be asymptotically consistent. Similar numerical evidence exists for �nite element

approximations of the Navier-Stokes equations [5].
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Figure 8: Comparison of Optimal Solution with Data
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